Interpretable Machine Learning: Lessons from Topic Modeling
نویسنده
چکیده
Paste the appropriate copyright statement here. ACM now supports three different copyright statements: • ACM copyright: ACM holds the copyright on the work. This is the historical approach. • License: The author(s) retain copyright, but ACM receives an exclusive publication license. • Open Access: The author(s) wish to pay for the work to be open access. The additional fee must be paid to ACM. This text field is large enough to hold the appropriate release statement assuming it is single spaced in a sans-serif 7 point font. Every submission will be assigned their own unique DOI string to be included here. Abstract This paper examines how the topic modeling community has characterized interpretability, and discusses how ideas used in topic modeling could be used to make other types of machine learning more interpretable. Interpretability is discussed both from the perspective of evaluation (“how interpretable is this model?”) and training (“how can we make this model more interpretable?”) in machine learning.
منابع مشابه
Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کاملA NOTE TO INTERPRETABLE FUZZY MODELS AND THEIR LEARNING
In this paper we turn the attention to a well developed theory of fuzzy/lin-guis-tic models that are interpretable and, moreover, can be learned from the data.We present four different situations demonstrating both interpretability as well as learning abilities of these models.
متن کاملTopic Modeling for Classification of Clinical Reports
Electronic health records (EHRs) contain important clinical information about patients. Efficient and effective use of this information could supplement or even replace manual chart review as a means of studying and improving the quality and safety of healthcare delivery. However, some of these clinical data are in the form of free text and require pre-processing before use in automated systems...
متن کاملA Deep Non-Negative Matrix Factorization Neural Network
Recently, deep neural network algorithms have emerged as one of the most successful machine learning strategies, obtaining state of the art results for speech recognition, computer vision, and classification of large data sets. Their success is due to advancement in computing power, availability of massive amounts of data and the development of new computational techniques. Some of the drawback...
متن کاملTopic Modeling with Nonparametric Markov Tree
A new hierarchical tree-based topic model is developed, based on nonparametric Bayesian techniques. The model has two unique attributes: (i) a child node in the tree may have more than one parent, with the goal of eliminating redundant sub-topics deep in the tree; and (ii) parsimonious sub-topics are manifested, by removing redundant usage of words at multiple scales. The depth and width of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016